APOGEE-2S Mg-Al anti-correlation of the metal-poor globular cluster NGC 2298

No hay miniatura disponible
Fecha
2022-06-01
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
EDP Sciences
Nombre de Curso
Licencia CC
CC BY 4.0 DEED Attribution 4.0 International
Licencia CC
https://creativecommons.org/licenses/by/4.0/
Resumen
We present detailed elemental abundances and radial velocities of stars in the metal-poor globular cluster (GC) NGC 2298, based on near-infrared high-resolution (R 22-500) spectra of 12 members obtained during the second phase of the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) at Las Campanas Observatory as part of the seventeenth Data Release (DR 17) of the Sloan Digital Sky Survey IV (SDSS-IV). We employed the Brussels Automatic Code for Characterizing High accuracy Spectra (BACCHUS) software to investigate abundances for a variety of species including α elements (Mg, Si, and Ca), the odd-Z element Al, and iron-peak elements (Fe and Ni) located in the innermost regions of NGC 2298. We find a mean and median metallicity [Fe/H 1.76 and 1.75, respectively, with a star-to-star spread of 0.14 dex, which is compatible with the internal measurement errors. Thus, we find no evidence for an intrinsic [Fe/H] abundance spread in NGC 2298. The typical α-element enrichment in NGC 2298 is overabundant relative to the Sun, and it follows the trend of other metal-poor GCs. We confirm the existence of an Al-enhanced population in this cluster, which is clearly anti-correlated with Mg, indicating the prevalence of the multiple-population phenomenon in NGC 2298. © ESO 2022
Notas
Indexación: Scopus.
Palabras clave
Globular clusters: individual: NGC 2298, Stars: abundances, Stars: chemically peculiar, Techniques: spectroscopic
Citación
Astronomy and Astrophysics, Volume 662, 1 June 2022, Article number A47
DOI
10.1051/0004-6361/202243475
Link a Vimeo