Weighted antimagic labeling

No hay miniatura disponible
Fecha
2017
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier B.V.
Nombre de Curso
Licencia CC
Atribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional CC BY-NC-ND 4.0 Deed
Licencia CC
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
Resumen
A graph G=(V,E) is weighted- k-antimagic if for each w:V→R, there is an injective function f:E→{1,…,|E|+k} such that the following sums are all distinct: for each vertex u, ∑v:uv∈Ef(uv)+w(u). When such a function f exists, it is called a (w,k)-antimagic labeling of G. A connected graph G is antimagic if it has a (w0,0)-antimagic labeling, for w0(u)=0, for each u∈V. In this work, we prove that all the complete bipartite graphs Kp,q, are weighted-0-antimagic when 2≤p≤q and q≥3. Moreover, an algorithm is proposed that computes in polynomial time a (w,0)-antimagic labeling of the graph. Our result implies that if H is a complete partite graph, with H≠K1,q, K2,2, then any connected graph G containing H as a spanning subgraph is antimagic. © 2017 Elsevier B.V.
Notas
Indexación: Scopus
Palabras clave
Antimagic labeling, Complete bipartite graph, Graph labeling, Weighted antimagic labeling
Citación
Discrete Applied Mathematics Volume 245, Pages 194 - 20120 August 2018
DOI
10.1016/j.dam.2017.05.006
Link a Vimeo