Weighted antimagic labeling

dc.contributor.authorMatamala, Martín
dc.contributor.authorZamora, José
dc.date.accessioned2024-09-17T16:13:47Z
dc.date.available2024-09-17T16:13:47Z
dc.date.issued2017
dc.descriptionIndexación: Scopus
dc.description.abstractA graph G=(V,E) is weighted- k-antimagic if for each w:V→R, there is an injective function f:E→{1,…,|E|+k} such that the following sums are all distinct: for each vertex u, ∑v:uv∈Ef(uv)+w(u). When such a function f exists, it is called a (w,k)-antimagic labeling of G. A connected graph G is antimagic if it has a (w0,0)-antimagic labeling, for w0(u)=0, for each u∈V. In this work, we prove that all the complete bipartite graphs Kp,q, are weighted-0-antimagic when 2≤p≤q and q≥3. Moreover, an algorithm is proposed that computes in polynomial time a (w,0)-antimagic labeling of the graph. Our result implies that if H is a complete partite graph, with H≠K1,q, K2,2, then any connected graph G containing H as a spanning subgraph is antimagic. © 2017 Elsevier B.V.
dc.description.urihttps://www-sciencedirect-com.recursosbiblioteca.unab.cl/science/article/pii/S0166218X17302433?via%3Dihub
dc.identifier.citationDiscrete Applied Mathematics Volume 245, Pages 194 - 20120 August 2018
dc.identifier.doi10.1016/j.dam.2017.05.006
dc.identifier.issn0166-218X
dc.identifier.urihttps://repositorio.unab.cl/handle/ria/60258
dc.language.isoen
dc.publisherElsevier B.V.
dc.rights.licenseAtribución/Reconocimiento-NoComercial-SinDerivados 4.0 Internacional CC BY-NC-ND 4.0 Deed
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectAntimagic labeling
dc.subjectComplete bipartite graph
dc.subjectGraph labeling
dc.subjectWeighted antimagic labeling
dc.titleWeighted antimagic labeling
dc.typeArtículo
Archivos
Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
TEXTO EN INGLES
Tamaño:
452.32 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: