Phenolic Profile, Antioxidant and Enzyme Inhibition Properties of the Chilean Endemic Plant Ovidia pillopillo (Gay) Meissner (Thymelaeaceae)

Cargando...
Miniatura
Fecha
2022-02
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Nombre de Curso
Licencia CC
Attribution 4.0 International (CC BY 4.0)
Licencia CC
https://www.mdpi.com/openaccess
Resumen
Ovidia pillopillo (Lloime) is an endemic species of the Valdivian Forest of Chile. Little is known on the chemistry and biological activity of this plant. In this study, the phenolic profile, antiox-idant capacities and enzyme inhibition capacities (against tyrosinase and cholinesterase) of the plant were investigated for the first time. The phenolic profile of the plant was obtained by UHPLC-MS fingerprinting with high resolution, which showed the presence of several flavonoids and coumarins. The antioxidant potential was measured by FRAP and ORAC (45.56 ± 1.32; 25.33 ± 1.2 µmol Trolox equivalents/g dry plant, respectively) plus ABTS and DPPH methods (IC50 = 9.95 ± 0.05 and 6.65 ± 0.5 µg/mL, respectively). Moreover, the flavonoid and phenolic contents were determined (57.33 ± 0.82 and 38.42 ± 1.32, µg of Trolox and quercetin equivalents/100 g dry weight, respectively). The ethanolic extract showed cholinesterase (IC50 = 1.94 ± 0.07 and 2.73 ± 0.05 µg/mL, for AChE and BuChE, respectively) and tyrosinase (4.92 ± 0.05 µg/mL) enzyme inhibition activities. Based on these in vitro studies, in silico simulations were performed, which determined that the major compounds as ligands likely docked in the receptors of the enzymes. These results suggest that Ovidia pillopillo produce interesting special coumarins and flavonoids, which are potential candidates for the exploration and preparation of new medicines.
Notas
Indexación: Scopus.
Palabras clave
Antioxidants, Cholinesterase inhibition, Coumarins, Daphnetin, Endemic species, Glycosyl flavonoids, Toxic plants, UHPLC–PDA–OT-MS/MS analysis
Citación
Metabolites, Volume 12, Issue 2, February 2022, Article number 90
DOI
10.3390/metabo12020090
Link a Vimeo