Diseño y síntesis química de moléculas con propiedades antiparasitarias usando enfoques de diseño de fármacos asistidos por computadora
No hay miniatura disponible
Archivos
Fecha
2022
Autores
Profesor/a Guía
Facultad/escuela
Idioma
es
Título de la revista
ISSN de la revista
Título del volumen
Editor
Universidad Andrés Bello
Nombre de Curso
Licencia CC
Licencia CC
Resumen
El crecimiento de la industria salmonera en Chile ha traído consigo la aparición de patógenos y sus
respectivas enfermedades, causando grandes pérdidas económicas. Caligus rogercresseyi es un
ectoparásito que afecta el cultivo de salmónidos y para contrarrestar sus efectos patogénicos, se han
desarrollado tratamientos antiparasitarios liderados por compuestos químicos como benzoato de
emamectina o azametifos. Desafortunadamente, a medida que han pasado los años, el parásito ha
adquirido resistencia a ellos y, por lo tanto, se ha disminuido su efectividad. Esta pérdida de sensibilidad
está dada por una evolución molecular, por lo que ha sido necesario buscar nuevos blancos
farmacológicos. En este proyecto se proponen como blancos farmacológicos los canales de unión
intracelular Gap Junction (GJ), que han sido blanco de estudio en parásitos que afectan la salud humana y
veterinaria. Estos canales son proteínas transmembranales encargadas de la comunicación entre una célula
y el medio en que se encuentra. La superfamilia GJ incluye subunidades de proteínas conocidas como
conexinas (Cx) y panexinas (Panxs) en vertebrados, innexinas (Inxs) en invertebrados y vinnexinas en
virus, que pueden formar canales de uniones comunicantes y/o funcionar como hemicanales (HC). Aunque
los genes de los HCs son evolutivamente diferentes, las proteínas exhiben una evolución convergente con
múltiples características estructurales y funcionales. Debido a la importancia que tienen en procesos
fisiológicos y las características estructurales que presentan, se han estudiado como blanco de moléculas
moduladoras y/o inhibidoras en vertebrados e invertebrados. En C. rogercresseyi se ha identificado solo
una secuencia aminoacídica que corresponde a la Inx2. Esta información es relevante ya que permite
estudiar la proteína como nuevo blanco farmacológico y desarrollar, a través de estrategias
bioinformáticas, nuevos compuestos que tengan capacidad moduladora o inhibidora del HC de Inx2 que
proyecten una posible actividad antiparasitaria contra C. rogercresseyi.
Para diseñar las nuevas moléculas se utilizó como punto de inicio las estructuras químicas de moduladores
de otros HC GJ. Inicialmente se generó un modelo 3D de la proteína con Alphafold y se realizó un docking
molecular con moduladores conocidos de HC GJ para determinar el sitio activo. Además, se seleccionaron
los que mostraron mejor afinidad y se realizaron simulaciones de dinámica molecular que confirmaron la
estabilidad de unión a través del tiempo. Luego se realizó un docking molecular con moléculas que tienen
actividad antiparasitaria y se seleccionaron los 5 mejores para realizar un modelo de farmacóforo basado
en ligando, con el que se realizó un virtual screening de diversas bases de datos y se seleccionaron 10 con
mejor afinidad por la proteína. Con base en estos resultados se diseñaron y sintetizaron dos moléculas con
fragmentos de quinolina y sulfona, que se determinaron como esenciales para que haya una actividad en
el HC de Inx2. Estas moléculas podrían ser un potencial tratamiento contra C. rogercresseyi.
The growth of the salmon industry in Chile has brought with it the appearance of pathogens and their respective diseases, causing great economic losses. Caligus rogercresseyi is an ectoparasite that affects salmonid farming. To prevent its pathogenic effects, antiparasitic treatments have been developed, led by chemical compounds such as emamectin benzoate or azamethiphos. Unfortunately, as the years have passed, the parasite has developed resistance to them, and their effectiveness has decreased. This loss of sensitivity is due to molecular evolution, so it has been necessary to search for new pharmacological targets. In this project we propose as pharmacological targets the intracellular Gap Junction (GJ) channels, which have been the target of study in parasites affecting human and veterinary health. These channels are transmembrane proteins responsible for communication between a cell and its environment. The GJ superfamily includes protein subunits known as connexins (Cx) and pannexins (Panxs) in vertebrates, innexins (Inxs) in invertebrates and vinnexins in viruses, which can form communicating junction channels and/or function as hemichannels (HCs). Although the genes of HCs are evolutionarily distinct, the proteins show convergent evolution with multiple structural and functional features. Because of their importance in physiological processes and the structural features they show, they have been studied as targets of modulatory and/or inhibitory molecules in vertebrates and invertebrates. In C. rogercresseyi only one amino acid sequence has been found, corresponding to Inx2. This information is relevant because it allows us to study the protein as a new pharmacological target and to develop, through bioinformatics strategies, new compounds with HC modulating or inhibitory ability of Inx2 that project a possible antiparasitic activity against C. rogercresseyi. To design the new molecules, the chemical structures of modulators of other GJ HCs were used as a starting point. Initially, a 3D model of the protein was generated with AlphaFold, and molecular docking was performed with known HC GJ modulators to determine the active site. In addition, those that showed the best affinity were selected and molecular dynamics simulations were performed to confirm binding stability over time. Molecular docking was then performed with molecules that have antiparasitic activity and the best 5 were selected to perform a ligand-based pharmacophore model, with which a virtual screening of various databases was performed and 10 with the best affinity for the protein were selected. Based on these results, two molecules with quinoline and sulfone fragments were designed and synthesized, which were determined to be essential for activity in the HC of Inx2. These molecules could be a potential treatment against C. rogercresseyi and, in addition, would help to study the role of Inx2 in the parasite.
The growth of the salmon industry in Chile has brought with it the appearance of pathogens and their respective diseases, causing great economic losses. Caligus rogercresseyi is an ectoparasite that affects salmonid farming. To prevent its pathogenic effects, antiparasitic treatments have been developed, led by chemical compounds such as emamectin benzoate or azamethiphos. Unfortunately, as the years have passed, the parasite has developed resistance to them, and their effectiveness has decreased. This loss of sensitivity is due to molecular evolution, so it has been necessary to search for new pharmacological targets. In this project we propose as pharmacological targets the intracellular Gap Junction (GJ) channels, which have been the target of study in parasites affecting human and veterinary health. These channels are transmembrane proteins responsible for communication between a cell and its environment. The GJ superfamily includes protein subunits known as connexins (Cx) and pannexins (Panxs) in vertebrates, innexins (Inxs) in invertebrates and vinnexins in viruses, which can form communicating junction channels and/or function as hemichannels (HCs). Although the genes of HCs are evolutionarily distinct, the proteins show convergent evolution with multiple structural and functional features. Because of their importance in physiological processes and the structural features they show, they have been studied as targets of modulatory and/or inhibitory molecules in vertebrates and invertebrates. In C. rogercresseyi only one amino acid sequence has been found, corresponding to Inx2. This information is relevant because it allows us to study the protein as a new pharmacological target and to develop, through bioinformatics strategies, new compounds with HC modulating or inhibitory ability of Inx2 that project a possible antiparasitic activity against C. rogercresseyi. To design the new molecules, the chemical structures of modulators of other GJ HCs were used as a starting point. Initially, a 3D model of the protein was generated with AlphaFold, and molecular docking was performed with known HC GJ modulators to determine the active site. In addition, those that showed the best affinity were selected and molecular dynamics simulations were performed to confirm binding stability over time. Molecular docking was then performed with molecules that have antiparasitic activity and the best 5 were selected to perform a ligand-based pharmacophore model, with which a virtual screening of various databases was performed and 10 with the best affinity for the protein were selected. Based on these results, two molecules with quinoline and sulfone fragments were designed and synthesized, which were determined to be essential for activity in the HC of Inx2. These molecules could be a potential treatment against C. rogercresseyi and, in addition, would help to study the role of Inx2 in the parasite.
Notas
Proyecto de título (Ingeniero en Biotecnología)
Palabras clave
Moléculas, Síntesis, Agentes Antiparasitarios, Salmón, Enfermedades, Tratamiento, Procesamiento de Datos