Strength Assessment of Trunk Rotator Muscles: A Multicenter Reliability Study

Cargando...
Miniatura
Fecha
2023-08
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
MDPI
Nombre de Curso
Licencia CC
Atribución 4.0 Internacional (CC BY 4.0)
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Background: Trunk rotator strength plays an important role in sports performance and health. A reliable method to assess these muscles with functional electromechanical dynamometer has not been described. Therefore, the objectives of this paper were (I) to explore the reliability of different strength variables collected in isokinetic and isometric conditions during two trunk rotator exercises, and (II) to determine the relationship of isometric and dynamic strength variables collected in the same exercise. Methods: A repeated measures design was performed to evaluate the reliability of the horizontal cable woodchop (HCW) and low cable woodchop (LCW) exercises. Reliability was assessed using t-tests of paired samples for the effect size, the standard error of measurement, the coefficient of variation (CV) and the intraclass correlation coefficient (ICC). The Pearson’s (r) correlation coefficient was used to explore the association between isometric and isokinetic tests. Results: HCW exercise is more reliable than LCW exercise in assessing trunk rotator muscles. The strength manifestation that should be used is the average strength, and the most reliable evaluation was the HCW at 0.40 m·s−1 concentric (ICC = 0.89; CV = 10.21%) and eccentric (ICC = 0.85; CV = 9.33%) contraction and the dynamic condition that most correlated with the isometric was LWC at 0.50 m·s−1 (r = 0.83; p < 0.01). Conclusion: HCW is a reliable exercise to measure trunk rotator muscles. © 2023 by the authors.
Notas
Indexación: Scopus
Palabras clave
Core strength, Isokinetic, Muscle strength dynamometer, Reproducibility, Testing
Citación
Healthcare (Switzerland) Volume 11, Issue 16August 2023 Article number 2331
DOI
10.3390/healthcare11162331
Link a Vimeo