Baryon effects on void statistics in the EAGLE simulation

No hay miniatura disponible
Fecha
2017-10
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
Oxford University Press
Nombre de Curso
Licencia CC
CC BY 4.0 DEED
Licencia CC
https://creativecommons.org/licenses/by/4.0/deed.es
Resumen
Cosmic voids are promising tools for cosmological tests due to their sensitivity to dark energy, modified gravity and alternative cosmological scenarios. Most previous studies in the literature of void properties use cosmological N-body simulations of dark matter (DM) particles that ignore the potential effect of baryonic physics. Using a spherical underdensity finder, we analyse voids using the mass field and subhalo tracers in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations, which follow the evolution of galaxies in a Λ cold dark matter universe with state-of-the-art subgrid models for baryonic processes in a (100 cMpc)3 volume. We study the effect of baryons on void statistics by comparing results with DM-only simulations that use the same initial conditions as EAGLE. When identifying voids in the mass field, we find that a DM-only simulation produces 24 per cent more voids than a hydrodynamical one due to the action of galaxy feedback polluting void regions with hot gas, specially for small voids with rvoid ≤ 10 Mpc. We find that the way in which galaxy tracers are selected has a strong impact on the inferred void properties. Voids identified using galaxies selected by their stellar mass are larger and have cuspier density profiles than those identified by galaxies selected by their total mass. Overall, baryons have minimal effects on void statistics, as void properties are well captured by DM-only simulations, but it is important to account for howgalaxies populateDMhaloes to estimate the observational effect of different cosmological models on the statistics of voids. © 2017 The Authors.
Notas
Indexación: Scopus
Palabras clave
Large-scale structure of Universe, Methods, statistical
Citación
Monthly Notices of the Royal Astronomical Society Volume 470, Issue 4, Pages 4434 - 4452October 2017
DOI
10.1093/mnras/stx1514
Link a Vimeo