Conditional maximum entropy and superstatistics

No hay miniatura disponible
Fecha
2020-11
Autores
Davis, Sergio
Profesor/a Guía
Facultad/escuela
Idioma
en
Título de la revista
ISSN de la revista
Título del volumen
Editor
IOP Publishing Ltd
Nombre de Curso
Licencia CC
CC BY 3.0 ES DEED Atribución 3.0 España
Licencia CC
https://creativecommons.org/licenses/by/3.0/es/deed.es
Resumen
Superstatistics describes nonequilibrium steady states as superpositions of canonical ensembles with a probability distribution of temperatures. Rather than assume a certain distribution of temperature, recently [2020 J. Phys. A: Math. Theor. 53 045004] we have discussed general conditions under which a system in contact with a finite environment can be described by superstatistics together with a physically interpretable, microscopic definition of temperature. In this work, we present a new interpretation of this result in terms of the standard maximum entropy principle using conditional expectation constraints, and provide an example model where this framework can be tested.
Notas
Indexación: Scopus
Palabras clave
Conditional expectation, Maximum entropy, Superstatistics
Citación
Journal of Physics A: Mathematical and Theoretical Volume 53, Issue 4 4November 2020 Article number A5
DOI
10.1088/1751-8121/abb6af
Link a Vimeo